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Two-dimensional cnoidal waves in Kerr-type saturable nonlinear media
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We report theoretically the existence, classification, and basic properties of families of stationary two-
dimensional cnoidal-type waves in bulk Kerr-type saturable nonlinear media. The families of two-dimensional
cnoidal-type wave solutions are shown to exhibit richer features than their known one-dimensional counter-
parts. At low- and high-energy flows, the cnoidal patterns are predicted to be robust enough to be observable
experimentally.
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Self-trapping of two-dimensional beams in satura
Kerr-type nonlinear media has been studied extensively
ing the past years. On physical grounds, several mechan
are known to lead to saturation, including temperatu
dependent reorientation of anisotropic molecules in ga
and liquids@1#, Lorentz local field corrections@2#, population
changes in the case of an off-resonant interaction with
atomic system@3#, full ionization of laser-produced plasm
@4#, and some specific cases of photorefractive nonlinea
@5#. Bright ground-state soliton solutions of bulk models w
Kerr-type saturable nonlinear media have been shown to
theoretically stable@6# in contrast to pure Kerr media@7#,
and under appropriate conditions they approximately
scribe solitons experimentally observed in photorefract
crystals@5#. Simple dark soliton beams do also exist in mo
els with saturable nonlinearity, and are dynamically sta
@8#. Higher-order bound states, characterized by differ
number of nodes, do also exist@9# but they suffer from azi-
muthal instabilities@6# leading to their decay into sets o
ground-state solitons.

One important current line of research in the area of n
linear waves is the elucidation of complex self-trapped str
tures. Examples of such structures are soliton clusters@10#,
which might be termedsoliton molecules. Following this
line, a fascinating question is the existence of extended,
riodic, higher-dimensional, self-trapped structures, wh
might be termedlight crystals. Besides its fundamental in
terest, such a concept may be fruitful in such fields as
mation of periodic matrices of ultracold atoms or trapp
Bose-Einstein condensates@11#, Bloch waves in solid-state
physics, or the creation of light-induced reconfigurab
waveguide arrays in photorefractive crystals@12#. Such self-
trapped periodic patterns might be constructed by the n
trivial generalization of one-dimensional cnoidal waves@13#.
Related advances in this direction are the recent observa
of two-dimensional~2D! soliton-type arrays due to the opt
cally seeded transverse modulation instability of interfere
fringes in photorefractive crystals@14#, the clustering of pho-
torefractive solitons in weakly correlated wave fronts@15#,
and the formation of two-dimensional discrete solitons
photonic lattices@16#. The crucial feature of the cnoida
wave concept, in contrast to the arrays built of individu
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r-
ms
-

es

n

ty

be

-
e
-
e
t

-
-

e-
h

r-

n-

on

e

l

solitons, is that cnoidal waves are global periodic solutio
of the wave equation, which exist for different values of t
contrast, or localization degree of the individual light spo

In this paper, we study the model of Kerr-type satura
nonlinear media, and find, for the first time, to the best of o
knowledge, the theoretical existence and basic propertie
families of stationary two-dimensional periodic solutions
2D cnoidal-type waves. While from a rigorous mathemati
point of view such waves are unstable, we show that in
limits of low and high powers, the 2D cnoidal-type wav
patterns are robust enough to be observable experiment

Propagation of nonlinear light waves in a bulk satura
media is described by the nonlinear Schro¨dinger equation
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11Suqu2 . ~1!

Here,q(h,z,j) is the dimensionless slowly varying ampl
tude of the light field; transverseh, z and longitudinalj
coordinates are scaled in terms of the spatial period~in such
a way that it equals to 2p! and the diffraction length, respec
tively; S is the saturation parameter;s521(11) for focus-
ing ~defocusing! media. Note that ifq(h,z,j,S) is the solu-
tion of Eq. ~1!, then xq(xh,xz,x2j,x22S) ~here x is the
arbitrary scaling factor! is also a solution of this equation
These scaling transformations can be used for searchin
cnoidal wave arrays for different values of saturation para
eter and period. Equation~1! admits several conserved qua
tities including energy flow, linear momentum, and Ham
tonian. In the case of periodic cnoidal-type wave, one c
introduce the energy flow per periodT as U
5*2T/2

T/2 *2T/2
T/2 uqu2dh dz.

Under certain conditions, this model describes lig
beams self-action in photorefractive crystals@5#. However,
we stress that in this paper we are interested in the peri
solutions for any nonlinear wave problem described by E
~1!. Note also that in the general case, the exact station
solutions of Eq.~1! are not described by Jacoby elliptic fun
tions, however by analogy we term periodic solution fou
here ascnoidal waves.

We look for steady-state solutions of Eq.~1! in the form
q(h,z,j)5w(h,z)exp(ibj), whereb is the real propagation
©2003 The American Physical Society03-1
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FIG. 1. Cn-cn~a!, dn-dn ~b!,
cn-dn ~c!, and sn-sn~d! cnoidal
wave arrays in saturable media
First row shows dispersion dia
grams for wave of each type. Sur
face plots in each column show
evolution of wave profile with in-
crease of energy flowU. T52p,
S50.1.
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constant andw(h,z) is the real amplitude satisfying period
boundary conditions w(h1T,z)5w(h,z), w(h,z1T)
5w(h,z). Substitution of the steady-state wave field in
Eq. ~1! leads to the following equation forw(h,z):

1

2 S ]2w

]h2 1
]2w

]z2 D2
sw3

11Sw22bw50. ~2!

Equation~2! admits analytical solutions in two limiting case
of low w→0 and highw→` field amplitudes. In the first
case, the nonlinear term can be neglected and one arriv
the linear Helmholtz-type equation (1/2)(]2w/]h2

1]2w/]z2)2bw50. It has a trivial solution w(h,z)
5w0 cos@(2b)1/2h#cos@(2b)1/2z#. For high amplitude values
w→`, one gets the equation (1/2)(]2w/]h21]2w/]z2)
2(b1s/S)w50 upon linearization of second term in E
~3!. In this case, the analytical solution has the fo
w(h,z)5w0 cos@(2b2s/S)1/2h#cos@(2b2s/S)1/2z#. These
trivial solutions define cutoff values of the propagation co
stantb, depending on the wave period. ForT52p, one gets
bw→0521 andbw→`5212s/S.

For arbitrary amplitudes, Eq.~2! has to be solved numeri
cally. For this we used the relaxation technique. It is instr
tive to classify possible types of solutions using their on
dimensional cross sections. Thus, it is known@13# that for
]/]z[0 and focusing nonlinearity, Eq.~2! has two periodic
solutions known as cn and dn waves. The first of these wa
periodically changes its sign and has no zero spatial
01560
at

-

-
-

es
r-

monic in its spectrum, whereas the second one is alw
positive and has zero spatial harmonic in the spectrum.
waves were shown to be weakly unstable in cubic medi
@13#, whereas dn waves are highly unstable due to the p
ence of zero harmonic in the spatial spectrum. In the de
cusing medium, the one-dimensional analog of Eq.~2! ad-
mits a solution, called sn wave that is completely stab
Two-dimensional solutions can be divided into four typ
involving nonlinear combinations of the corresponding on
dimensional waves: cn-cn, dn-dn, and cn-dn waves for
cusing nonlinearity, and sn-sn wave for defocusing non
earity.

The properties of cn-cn waves are summarized in colu
~a! of Fig. 1. The energy flow is a monotonically growin
function of the propagation constant. AtU→0 andU→`,
the wave transforms into a two-dimensional harmonic p
tern, whereas for intermediate energy levels the wave tra
forms into an array of out-of-phase solitons. The cutoff v
ues found numerically are in agreement with analyti
results presented above.

Dn-dn wave contains zero harmonic in its spatial sp
trum @column ~b! of Fig. 1#. At b50.25, it transforms into
the plane wavew5@2b/(s1bS)#1/2. For intermediate en-
ergy level, dn-dn wave has a form of array of well-localiz
in-phase solitons. Near the high-energy cutoff, zero harmo
appears again in the spatial spectrum of dn-dn wave,
field distribution has a rather complicated structure.

Cn-dn wave@column ~c! of Fig. 1# at low-energy cutoff
3-2
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b520.25 transforms into an array of slit beams, which a
uniform alongz axis and are shaped by cn wave alongh
axis. At moderateU values, this wave has the form of a
array of out-of-phase solitons that differ alongz axis from
the corresponding cn-cn array. Both dn-dn and cn-dn wa
have upper limit of energy flow, while energy flow of cn-c
wave is unlimited.

Finally, in the defocusing medium, we have found on
one lowest-order cnoidal wave array—sn-sn@column ~d! of
Fig. 1#. For U→0 andU→`, this wave approaches to two
dimensional harmonic pattern, whereas at intermediate
ergy flows come close to an array of out-of-phase dark s
tons.

Among potential applications of the cnoidal waves is t
implementation of periodic light spots~e.g., for writing ar-
rays of light-induced waveguides! @16,17#. The integral
width of each light spot is defined as

D52E
0

T/4

dhE
0

T/4

dzw2~h,z!~h21z2!1/2

Y E
0

T/4

dhE
0

T/4

dzw2~h,z!. ~3!

It describes the energy localization within the fixed wa
period. The dependence of the integral width on the ene
flow is presented in Fig. 2. For the cn-cn array, the widthD
reaches its minimal value inside the existence segment
corresponds to the highest degree of energy localization.

FIG. 2. Width of the separate soliton pixel in the cnoidal wa
array versus energy flow for cn-cn~a! and sn-sn~b! arrays. T
52p, S50.1.

FIG. 3. Propagation of perturbed cn-cn wave withU53 ~a!, 30
~b!, and 30 000~c!. Upper row shows input field distribution, lowe
row shows field distribution atj516. T52p, S50.1, noise vari-
ancesn

250.02.
01560
e

es

n-
i-

y

at
or

the sn-sn array, the width reaches its minimal values at lo
or high-energy flows, whereas situation whereD is maximal
corresponds to almost rectangular profile of individual lig
spot. Note that in the case of self-focusing medium, the m
mal possible width of the light spot depends also on
saturation parameterS and decreases asS→0. In photore-
fractive media, the value of the saturation parameterScan be
controlled by adjusting the external background illuminatio

The cnoidal waves reported here are expected to be
stable from a rigorous mathematical point of view. Howev
practically the instability growth can be small for actual cry
tal lengths. Other important question regarding the exp
mental observation of such arrays is whether they can
excited embedded in laser beams with a finite transverse
To answer these questions, we solved nonlinear Schro¨dinger
equation ~1! with the initial condition q(h,z,j50)
5w(h,z)F(h,z)@11r(h,z)#, wherew(h,z) describes the
profile of stationary cnoidal wave,F(h,z) is the broad
Gaussian envelope, andr~h,z! is the Gaussian noise.

Numerical simulations reveal that the two-dimension
cnoidal waves seem to be robust enough to be observed
perimentally in the two limiting cases of relatively low- an
high-energy flows~see Fig. 3 with examples of propagatio
of perturbed cn-cn cnoidal wave array!. For noise variance
sn

250.01, the 2D cnoidal wave conserve their input struct
for more than 20 diffraction lengths for energy flows lyin
within rather broad intervals 0,U<20 and 102,U,`.
The higher the noise level, the faster the instability manife
itself, and the regions ofeffective stabilityexisting at both
low and high energies get narrower. Forsn

250.02, we got
approximate intervals 0,U,10 and 103,U,`. For fixed
noise level (sn

250.02), the cn-cn array with energy flowU
5103 remains almost undistorted up to 20 diffraction lengt
~which is of the order of the crystal length!, while for U
5105 it survives for more than 30 diffraction lengths and f
U5107 up to almost 50 lengths. Thus, theeffective stability
length increases with nonlinearity saturation.

An analogous behavior was observed in defocusing me
for sn-sn-type arrays~Fig. 4! that are unstable in contrast t
their (111)-dimensional counterparts. This result is not s

FIG. 4. Propagation of perturbed sn-sn wave withU53 ~a!, 30
~b!, and 30 000~c!. Upper row shows input field distribution, lowe
row shows field distribution atj516. T52p, S50.1, noise vari-
ancesn

250.02.
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prising in view of the fact that (211)-dimensional dark soli-
ton stripes are affected by snakelike instabilities@13# in de-
focusing media.

These observations lead us to the conclusion that un
proper conditions of low- and high-energy flows the tw
dimensional cnoidal waves appear to be robust enough t
observable in experiments. We would like to mention th
one could use for their excitation arrays of Gaussian be
with appropriately adjusted widths and amplitudes, Fou
synthesis of planar waves or holographic techniques. S
of these techniques were already used in photorefrac
crystals upon observation of soliton clustering@14,15#. In
this context, it must be highlighted that sinusoidal patterns
the photorefractive crystals which might be modeled by lo
01560
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energy cnoidal-type waves were experimentally observe
Refs.@12#, @16# and described in Ref.@17#. Finally, by their
very nature the cnoidal waves play an important role in
onset of modulational instabilities in nonlinear systems; th
the existence and properties of the solutions reported h
should be instrumental in the full understanding of physi
processes mediated by modulational instabilities.
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